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Abstract

General solutions of the stress and displacements in two-dimensional anisotropic elasticity may be represented by
eigenvectors and analytic functions of the complex variables x� miy, but the representation takes di�erent forms for

®ve distinct types of materials as determined by the elastic compliance matrix �b]. In this paper, explicit expressions
of the general solutions are derived for each type of anisotropic materials in terms of the eigenvalues mi and the
elements of �b]. It is shown that, for degenerate and extra-degenerate materials, the generalized eigenvectors and

associated eigensolutions may be obtained by the derivative rule. The Barnett±Lothe tensors are de®ned in terms of
unnormalized eigenvectors by the same set of relations regardless of material degeneracy. Explicit expressions of
these tensors are given in concise forms depending only on the multiplicity of the eigenvalues. The six-dimensional

matrix formalism and normalization of the eigenvectors are found to be neither essential nor expedient for the
analysis except as a device for abridged expressions of matrix identities. 7 2000 Elsevier Science Ltd. All rights
reserved.

Keywords: Anisotropic elasticity; Lekhnitskii's formalism; Stroh's formalism; Barnett±Lothe tensors; Degenerate materials

1. Introduction

Two-dimensional fundamental solutions of anisotropic elastic bodies were presented ®rst by
Lekhnitskii (1963) using a compliance-based formalism, and later by Stroh, 1958 and others in terms of
the anisotropic moduli of elasticity. It is well-known that the usual representation of the fundamental
solutions breaks down in the case of degenerate and extra-degenerate materials Ð materials with fewer
than three complex conjugate pairs of eigenvectors for the stresses or the displacements (see Ting (1996)
for a general introduction and references to anisotropic elasticity). This includes the important class of
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isotropic materials. More recently, Ting and Hwu (1988) showed the eigensolutions of materials that are
degenerate but not extra-degenerate. The case of extra-degenerate materials (with a triple eigenvalue that
has only one independent eigenvector) has been scarcely explored (Wang and Ting, 1997), and even the
existence of such materials had been questioned until quite recently.

In the present paper, explicit expressions of fundamental solutions are given for all types of
anisotropic materials, whether nondegenerate, degenerate or extra-degenerate. For each type of material,
the eigenvectors and generalized eigenvectors form a linearly independent system and satisfy modi®ed
orthogonality and closure relations. By using these relations, explicit expressions are obtained for the
Barnett±Lothe tensors in terms of the eigenvalues and the anisotropic compliancies. The Barnett±Lothe
tensors are here de®ned by the same expressions (Eqs. (3.2) and (3.4) of this paper) regardless of
material degeneracy, in terms of unnormalized eigenvectors.

A crucial relation that makes the structure of plane anisotropic elastostatic solutions so tangible is
that the ®rst two components of the b-vector (the eigenvector of the stress potentials) corresponding to
an eigenvalue m have the ratio ÿm: This relation, resulting from the existence of the Airy stress function,
introduces an asymmetry in the dual formalism, since the a-vector associated with the displacement ®eld
has no comparable property. Consequently, the expressions of the eigenvectors and eigensolutions of
various material types are generally simpler and more explicit in a compliance-based (Lekhnitskii)
formalism than in a sti�ness-based (Stroh) formalism.

In the degenerate and extra-degenerate cases, the generalized eigenvectors may be obtained by the
derivative rule. First, analytical expressions of the eigenvectors a and b are obtained as polynomial
functions of m before evaluating m at the repeated root m0: Di�erentiation of the expressions with respect
to m and subsequent evaluation at m � m0 then yields the generalized eigenvectors. For extra-degenerate
materials, repeated di�erentiation and subsequent evaluation at m � m0 gives a second set of generalized
eigenvectors. Generalized eigensolutions for the displacements, stress potentials, stress and strain may
also be obtained by using the same rule.

Our investigation leads naturally to ®ve distinctive types of anisotropic materials, each having
di�erent representations of the displacement and stress solutions. These material types are determined
by the multiplicity of eigenvalues and, in the case of a multiple root m0, whether or not the eigenmatrix
M�m0� or GGG�m0� has a vanishing adjoint matrix (see Eqs. (2.2b) and (2.12) in the next section for the
de®nitions of M�m� and GGG�m0�). If M�m� and, therefore, its adjoint matrix does not vanish for any real or
complex number m, then each eigenvalue, whether a simple or multiple root, is associated with only one
independent eigenvector. Such materials will be called normal (as will be shown in Part II of this paper,
their 6� 6 eigenmatrix N are either simple or non-semisimple). If M�m0� � 0 for some m0, then there are
exactly two independent eigenvectors associated with the double or triple root m0, and the material will
be called abnormal. This characterization implies, in particular, that there is no need to give a separate
analysis and classi®cation for the ``M3 materials'' (materials such that the matrix function M(m� is
always diagonal). Although abnormal materials are pathological in a mathematical sense, they are more
familiar in the common sense because isotropic materials and materials transversely isotropic in the x±y
plane are both abnormal.

A parallel investigation based on the Stroh formalism leads to the same classi®cation of materials, but
the eigensolutions and the Barnett±Lothe tensors are all expressed in terms of the eigenvalues and the
anisotropic elastic moduli. The latter set of expressions are derived in Part II of this paper. The dualism
and asymmetry of the two formalisms are made transparent in this study.

2. Five types of anisotropic elastic materials

Let aij �i, j � 1, . . . ,6� denote the anisotropic elastic compliance constants relating the strain
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components Ex, Ey, Ez, gyz, gxz, gxy to the stress components sx, sy, sz, tyz, txz, txy, and let

bij � aij ÿ ai3aj3=a33 �for i, j 6�3�:

Then, for generalized plane deformations, one has (Lekhnitskii, 1963)

fEg � �b�fsg, �2:1�

where fEg�fEx, Ey, gyz, gxz, gxygT, fsg�fsx, sy, tyz, txz, txygT and

�
b
� �

266664
b11 b12 b14 b15 b16
b12 b22 b24 b25 b26
b14 b24 b44 b45 b46
b15 b25 b45 b55 b56
b16 b26 b46 b56 b66

377775
We de®ne the matrix functions

P�m� �

266664
ÿm2 0
ÿ1 0
0 ÿ1
0 m
m 0

377775, �2:2a�

M�m� � PT�m�
�
b
�
P�m� �

�
l4�m� ÿl3�m�
ÿl3�m� l2�m�

�
: �2:2b�

where PT denotes the transpose of P. The characteristic equation

d�m� � jM�m�j � l2�m�l4�m� ÿ l3�m�2� 0 �2:3�

has three pairs of complex conjugate roots fmk, �mkg �k � 1, 2, 3�: Lekhnitskii (1963) presented the general
form of plane elastostatic solutions of anisotropic media in terms of the stress functions F �k��x� mky�
and C�k��x� mky� and their complex conjugates, assuming that the mk's are all distinct.

In the absence of body forces, the equilibrium conditions imply that s may be represented by the
derivatives of a pair of stress functions F�x, y� and C�x, y�:

sx � F,yy, sy � F,xx, txy � ÿF,xy,

txz � C,y, tyz � ÿC,y,

Solutions for the displacements u � fu; v, wgT and the stress potentials q � fF,y,ÿF,x,CgT may be sought
in the form

u �
X

a�i�fi�x� miy�, �2:4a�

q �
X

b�i�fi�x� miy� �2:4b�

or,
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8<: u
v
w

9=; �X
8>>><>>>:
a
�i�
1

a
�i�
2

a
�i�
3

9>>>=>>>;fi�x� miy�,
8<:F,y

ÿF,x

C

9=; �X
8>>><>>>:
b
�i�
1

b
�i�
2

b
�i�
3

9>>>=>>>;fi�x� miy�:

where mi's �i � 1, 2, . . . ,6� are complex constants to be determined and fi's are arbitrary complex-valued
analytic functions. Di�erentiating Eqs. (2.4a) and (2.4b), one obtains the strain and stress components

fEg �

8>>>>><>>>>>:
Ex
Ey
gyz
gxz
gxy

9>>>>>=>>>>>;
�

266664
@x 0 0
0 @y 0
0 0 @y
0 0 @x
@y @x 0

377775
8<: u
v
w

9=; �X
266664
1 0 0
0 mi 0
0 0 mi
0 0 1
mi 1 0

377775
8><>:
a
�i�
1

a2�i�
a3�i�

9>=>;f 0i �x� miy� �2:5a�

fsg �

8>>>><>>>>:
sx
sy
tyz
txz
txy

9>>>>=>>>>; �
266664
@ y 0 0
0 ÿ@x 0
0 0 ÿ@x
0 0 @y
ÿ@x 0 0

377775
8<:F,y

ÿF,x

C

9=; �X
266664
mi 0 0
0 ÿ1 0
0 0 ÿ1
0 0 mi
ÿ1 0 0

377775
8><>:
b
�i�
1

b2�i�
b3�i�

9>=>;f 0i �x� miy� �2:5b�

Since

txy � ÿ@xF,y � ÿ
X

b
�i�
1 f 0i �x� miy� � @y

ÿÿ F,x

� �X b
�i�
2 mif

0
i �x� miy�

one has

b
�i�
1 � ÿmib�i�2 �2:6�

It follows that

fsg �
X

P�mi �

8<: b�i�2

b
�i�
3

9=; f 0i �x� miy�, �2:7�

where P�m� was de®ned in Eq. (2.2a). We de®ne additional matrix functions

E�m� �

266664
1 0 0
0 m 0
0 0 m
0 0 1
m 1 0

377775 �2:8a�

Y�m� �

266664
1 ÿm 0
0 0 0
0 0 0
0 0 1
0 1 0

377775 �2:8b�

Then,
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YTE �
24 1 0 0
0 1 0
0 0 1

35 �2:9a�

ETP � PTE � 0, �2:9b�
The elements of the matrix function M�m� of Eq. (2.2b) are given by

l4�m� � b11m
4 ÿ 2b16m

3 � ÿ2b12 � b66
�
m2 ÿ 2b26m� b22

l3�m� � b15m
3 ÿ ÿb14 � b56

�
m2 � ÿb25 � b46

�
mÿ b24

l2�m� � b55m
2 ÿ 2b45m� b44 �2:10�

Eqs. (2.1), (2.5a) and (2.7) yield

E�mi �a�i� �
�
b
�
P�mi �

8<: b
�i�
2

b
�i�
3

9=; �2:11�

Pre-multiplication of the last equation by ET�mi ��b�ÿ1 and P�mi �T yield, respectively,

ET�mi �
�
b
�ÿ1

E�mi �a�i� � GGG�mi �a�i� � 0, �2:12�

PT�mi �
�
b
�
P�mi �

8<: b
�i�
2

b
�i�
3

9=; � M�mi �

8<: b
�i�
2

b
�i�
3

9=; � 0: �2:13�

The last two equations are formally analogous except for the di�erence in the dimensionality. The
relative analytical simplicity of the compliance-based formalism (in terms of bij� now becomes evident.
The present formulation, including the eigenrelation of Eq. (2.13), has been used previously in a general
analysis of mechanical and thermal stresses in multi-material wedges (Yin, 1997). We now adopt this
analysis approach to obtain the complete set of eigensolutions for the various classes of anisotropic
materials. The analysis and results of the alternative approach, based on the well-known eigenrelation of
Eq. (2.12), will be given in Part II of this paper.

Eq. (2.2b) yields

M�m�
�
l2�m�
l3�m�

�
� d�m�

�
1
0

�
�2:14�

M�m�

8<:
����������
l2�m�

p����������
l4�m�

p
9=; � d�m�

l3 �
�������
l2l4
p

8<:
����������
l4�m�

p����������
l2�m�

p
9=; �2:15�

where the square roots
����������
l2�m�

p
and

����������
l4�m�

p
are chosen as follows so as to be consistent with Eq. (2.3):

arg

� ����
l2

p �
� arg

� ����
l4

p �
� arg�l3�:
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For a normal material, the elements l2�m�, l3�m� and l4�m� of the matrix M�m� have no common roots.
Hence, the singular matrix M�mi � does not vanish and it must be of rank one. Consequently, Eq. (2.13)
has one independent solution vector and it may be chosen as8<: b

�i�
2

b
�i�
3

9=; �
8<:

�����������
l2�mi �

p
�����������
l4�mi �

p
9=; �2:16�

Notice that this vector is non-trivial because otherwise Eq. (2.3) would imply l3�mi � � 0, so that the
material would be abnormal. Eqs. (2.6) and (2.11) now yield

b�i� � J�mi �

8<: b�i�2

b
�i�
3

9=;, �2:17a�

a�i� � K�mi �

8<: b
�i�
2

b
�i�
3

9=; �2:17b�

where

J�m� �
24ÿm 0
1 0
0 1

35, �2:18a�

K�m� � YT�m�
�
b
�
P�m� �2:18b�

For an abnormal material, one has M�m0� � 0 for some eigenvalue m0: Two independent pairs of a- and
b-vectors are associated with this eigenvalue, which must be a repeated root of d�m� � 0: Choosing the
column vectors of the 2� 2 identity matrix to be the independent solutions of Eq. (2.13), we then have�

b�1�, b�2�
	
� J�m0 �,

�
a�1�, a�2�

	
� K�m0�: �2:19�

Thus, the number of independent eigenvectors depends on the multiplicity of the eigenvalues and on
whether the material is normal or abnormal. It follows that all anisotropic elastic materials may be
classi®ed into ®ve distinct types:

(N-Simple) Normal materials with three simple eigenvalues (The SP group);
(N-Double) Normal materials with one simple and one double eigenvalue (The D1 group);
(N-Triple) Normal materials with one triple eigenvalue (The ED group);
(A-Double) Abnormal materials with one simple and one double eigenvalue (The SS group);
(A-Triple) Abnormal materials with one triple eigenvalue (The D2 group).

This classi®cation is important because the di�erent types of materials have distinctive expressions of the
general solutions for the stress and displacements. An essentially identical classi®cation was reached
recently by Ting (1999), by examining four types of eigenvalues. He also made a separate classi®cation
for ``M3 materials'' whose elastic constants are such that all coe�cients of l3�m� vanish.
From the eigenrelation of Eq. (2.11) one can easily show that the a- and b-vectors associated with an

eigenvalue m are related by the transformation rules
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a � YT�m�
�
b
�
266664
0 ÿm2 0
0 ÿ1 0
0 0 ÿ1
0 0 m
0 m 0

377775b, �2:20a�

b � ÿdET�m�=dm
�
b
�ÿ1

E�m�a: �2:20b�
If a�j � and b�j � are the eigenvectors associated with another eigenvalue mj, then

b�i�Ta�j� � a�i�Tb�j� �
n
b
�i�
2 , b

�i�
3

o
(mi, mj)

8<: b
�j�
2

b
�j�
3

9=; �2:21�

where the matrix (m̂, m) is de®ned by

(m̂, m) � J
ÿ
m̂
�T

K�m� �K
ÿ
m̂
�T

J�m� �2:22�
It is straightforwardly veri®ed that

(m̂, m) � 1

m̂ÿ m

n
M
ÿ
m̂
�ÿM�m�

o
if m̂ 6�m �2:23a�

whereas

(m, m) �
�
l 04�m� ÿl 03�m�
ÿl 03�m� l 02�m�

�
� M 0�m� �2:23b�

Eqs. (2.13), (2.21) and (2.23a) imply the orthogonality relation

b�i�Ta�j� � a�i�Tb�j� � 0 if mi 6�mj �2:24�

It is easily seen that the eigenvectors associated with the complex conjugate eigenvalue �mj are Åa�j � and
Åb
�j �
: Hence,

b�i�T Åa�j� � a�i�T Åb
�j� �

n
b
�i�
2 , b

�i�
3

o
(mi, �mj)

8<: �b
�j�
2

�b
�j�
3

9=; � 0 �2:25�

The last equation is valid for i � j as well.

3. Non-degenerate cases

N-Simple materials and A-Double materials are non-degenerate. There are three pairs of independent
eigenvectors b�i � and a�i � �i � 1, 2, 3� and three pairs of complex conjugate eigenvectors. Eqs. (2.4a) and
(2.4b) give the complete representations of the displacements and the stress potentials. The eigenvectors
and the Barnett±Lothe tensors are found in the following.
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3.1. N-Simple material (the SP group)

For this case d�m� � 0 has three simple roots m1, m2, and m3, with positive imaginary parts. Each
eigenvalue has a unique pair of eigenvectors (except for a multiplicative factor) given by

b�s� � J�ms �

8<:
�����������
l2�ms �

p�����������
l4�ms �

p
9=; �

8>>><>>>:
ÿms

�����������
l2�ms �

p
�����������
l2�ms �

p
�����������
l4�ms �

p
9>>>=>>>;, a�s� � K�ms �

8<:
����
l2
p
�ms �����

l4
p
�ms �

9=; �s � 1, 2, 3� �3:1�

Then,

b�i�Ta�j� � a�i�Tb�j� �
n �����������

l2�mi �
p �����������

l4�mi �
p o

(mi, mj)

8>><>>:
�����������
l2�mj �

q
�����������
l4�mj �

q
9>>=>>; � f

0 if i 6�j
d 0�mi � if i � j

where d 0 � l2l
0
4� l4l 02ÿ2l3l 03: In conjunction with Eq. (2.25), this yields�

BT AT

ÅB
T ÅA

T

��
A ÅA
B ÅB

�
�
�
OOO 0
0 ÅOOO

�
�3:2�

where B � fb�1�, b�2�, b�3�g, A � fa�1�, a�2�, a�3�g and

OOO � BTA� ATB �
24 d 0�m1� 0 0
0 d 0�m2� 0
0 0 d 0�m3�

35
After pre- and post-multiplication by appropriate matrices, Eq. (3.2) yields the (modi®ed) closure
relations�

A ÅA
B ÅB

��
OOOÿ1 0
0 ÅOOO

ÿ1
��

BT AT

ÅB
T ÅA

T

�
�
�

I 0
0 I

�
�3:3�

i.e.,

Re
�
2AOOOÿ1BT ÿ I

�
� Re

�
BOOOÿ1BT

�
� Re

�
AOOOÿ1AT

�
� 0

Hence, the three matrices

L � 2iBOOOÿ1BT H � ÿ2iAOOOÿ1AT, S � ÿi�2AOOOÿ1BT ÿ I� �3:4�
are all real. They are the Barnett-Lothe tensors. Let U(m� denote the adjoint matrix of M(m), i.e.,

U�m� �
�
l2�m� l3�m�
l3�m� l4�m�

�
�3:5�

Then,

M�m�U�m� � U�m�M�m� � D�m�I, �3:6�
and
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L � 2i
X
s

�
1=d 0�ms �

	
b�s�b�s�

T

� 2i
X
s

�
1=d 0�ms �

	
J�ms �

8<:
����
l2
p
�ms �����

l4
p
�mi �

9=;n ����
l2

p
�ms �,

����
l4

p
�ms �

o
J�ms �T

� 2i
X
s

�
1=d 0�ms �

	
J�ms �U�ms �J�ms �T, �3:7a�

H � ÿ2i
X
s

�
1=d 0�ms �

	
K�ms �U�ms �K�ms �T, �3:7b�

S � ÿ2i
X
s

�
1=d 0�ms �

	
K�ms �U�ms �J�ms �T�iI: �3:7c�

Although the eigenvectors which form the matrices A and B are indeterminate up to multiplicative
complex scalar factors, these factors do not appear in the Barnett±Lothe tensors. The latter are uniquely
determined by the anisotropic elasticity of the material through the matrices U�ms�, J�ms� and K�ms� and
the scalars d 0�ms� (s =1, 2, 3). Eq. (3.7a) was ®rst given by Ting (1997). It will be shown that, in terms
of unnormalized eigenvectors, the orthogonality and closure relations (3.2) and (3.3) remain valid for the
degenerate and abnormal cases, and consequently for all types of anisotropic materials. Hence, Eq. (3.4)
always yields real matrices L, S and H.

3.2. A-Double material (the SS group)

In this case d�m� � 0 has one simple root m̂ and one double root m0 such that M�m0� � 0: Then,
U�m0� � 0 and there are two independent b-vectors associated with the eigenvalue m0, which may be
chosen as fÿm0, 1, 0gT and f0, 0, 1gT: Furthermore, l2�m̂�6�0 since the quadratic form l2 has no roots other
than m0 and �m0: Since l2 and l3 have this common pair of complex conjugate roots, one must have

l3�m� �
�ÿ
b15=b55

�
mÿ b24=b44

	
l2�m�

Hence, a solution of Eq. (2.13) associated with m̂ is f1; l3�m̂�=l2�m̂�gT�f1; �b15=b55�m̂ÿb24=b44gT and�
b�1�, b�2�

	
� J�m0 �, b�3� � J

ÿ
m̂
�� 1

l3
ÿ
m̂
�
=l2
ÿ
m̂
� � �3:8a�

�
a�1�, a�2�

	
� K�m0�, a�3� � K

ÿ
m̂
�� 1

l3
ÿ
m̂
�
=l2
ÿ
m̂
� � �3:8b�

Then Eq. (2.25) yields BT ÅA� AT ÅB � 0, and Eqs. (2.21), (2.23a) and (2.23b) yield

BTA� ATB � OOO �

264 l 04�m0� ÿl 03�m0� 0
ÿl 03�m0� l 02�m0� 0

0 0 d 0
ÿ
m̂
�
=l2
ÿ
m̂
�
375 �3:9a�
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OOOÿ1 �

264 2l 02�m0�=d 00�m0� 2l 03�m0�=d 00�m0� 0
2l 03�m0�=d 00�m0� 2l 04�m0�=d 00�m0� 0

0 0 l2
ÿ
m̂
�
=d 0
ÿ
m̂
�
375 �3:9b�

where, using l2�m0� � l3�m0� � l4�m0� � 0, one has

d 00�m0� � 2jU 0�m0�j � 2jM 0�m0�j � 2l 02�m0�l 04�m0 � ÿ 2l 03�m0�2:

The Barnett±Lothe tensors are obtained by substituting the preceding expression of OOOÿ1 in Eq. (3.4).
The results are

L � �2i=d 0ÿm̂�	JUJT
ÿ
m̂
�� �4i=d 00�m0�	JU 0JT�m0�,

H � ÿ�2i=d 0ÿm̂�	KUKT
ÿ
m̂
�ÿ �4i=d 00�m0�	KU 0KT�m0�,

S � ÿ�2i=d 0ÿm̂�	KUJT
ÿ
m̂
�ÿ �4i=d 00�m0�	KU 0JT�m0� � iI: �3:10�

4. Degenerate cases (two independent eigenvectors)

In a degenerate (but not extra-degenerate) case, there are only two pairs of independent eigenvectors.
Eqs. (2.4a), (2.4b) and (3.1) do not provide the complete representation of the displacements and the
stress potentials. Let b � fb1, b2, b3g, and a � fa1, a2, a3g be a pair of eigenvectors associated with a
repeated root m0: They satisfy the eigenrelations

M�m0�
�
b2
b3

�
�
�
0
0

�
, �4:1a�

b � J�m0�
�
b2
b3

�
, �4:1b�

a � K�m0�
�
b2
b3

�
: �4:1c�

We seek additional solutions of the following form

u � a�f�z� � ayf 0�z�, �4:2a�

q � b�f�z� � byf 0�z�, �4:2b�
where z � x� m0y, and b� � fb�1, b�2, b�3gT and a� � fa�1, a�2, a�3gT are vectors to be determined. Then,

ÿ@xF,y � ÿb�1f 0�z� ÿ b1yf
00�z� � @yÿÿ F,x

� � m0b
�
2f
0�z� � m0b2yf

00�z� � b2f
0�z�

Hence,

b�1 � ÿm0b�2 ÿ b2 �4:3�
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The strain and stress components associated with Eqs. (4.2a) and (4.2b) are, respectively,

fEg � E�m0�
�
a�f 0�z� � ayf 00�z��� E 0�m0�af 0�z�

and

fsg � P�m0�
��

b�2
b�3

�
f 0�z� �

�
b2
b3

��
yf 00�z� � P 0�m0�

�
b2
b3

�
f 0�z�

Substituting the preceding expressions into the constitutive relation, Eq. (2.1), and using Eqs. (4.1a)±
(4.1c), one obtains the eigenrelation for the undetermined vectors b� and a�:

E�m0�a� � E 0�m0�a �
�
b
�
P�m0�

�
b�2
b�3

�
� �b�P 0�m0 �� b2b3

�
�4:4�

The equation governing fb�2, b�3g is obtained after premultiplying the last equation and Eq. (4.1c) by the
matrices PT�m0� and JT�m0�, respectively, summing the results, and using the derivative of Eq. (2.9b),
PTE 0 �P 0 TE�0: This yields

M�m0�
�
b�2
b�3

�
�M 0�m0 �

�
b2
b3

�
�
�
0
0

�
�4:5�

Premultiplying Eq. (4.4) by the matrix YT�m�, and using Eqs. (2.8a), (2.8b), (2.9a), (2.18b) and (4.1c),
one obtains

a� � K�m0�
�
b�2
b�3

�
�K 0�m0�

�
b2
b3

�
�4:6�

Furthermore, Eqs. (4.1b) and (4.3) yield

b� � J�m0�
�
b�2
b�3

�
� J 0�m0�

�
b2
b3

�
�4:7�

Notice that Eqs. (4.5)±(4.7), which determine the generalized eigenvectors b� and a�, are di�erent from
the eigenrelations ((4.1a)±(4.1c)) governing the eigenvectors b and a.

The case of a double root �m0� with M�m0� � 0 corresponds to A-double materials (the SS Group)
discussed in the last section. We next consider N-double materials, which have a double eigenvalue with
M�m0�6�0: Then l2�m0�6�0, for otherwise l3�m0� and l4�m0� must also vanish by virtue of d�m0� � d 0�m0� � 0:
Hence, fl2�m0�, l3�m0�gT is a nontrivial solution of Eq. (4.1a). Di�erentiation of Eq. (2.14) yields

M�m�
�
l 02�m�
l 03�m�

�
�M 0�m�

�
l2�m�
l3�m�

�
� d 0�m�

�
1
0

�
�4:8�

Since d 0�m0� � 0, Eq. (4.5) is satis®ed by choosing fb2, b3g � fl2�m0�, l3�m0�g and fb�2, b�3g � fl 02�m0�, l 03�m0�g:
Eq. (4.3) then yields b�1�ÿm0l 02�m0�ÿ l2�m0���ÿml2� 0�m0��b 01�m0�: Consequently,

b� � db=dm, a� � da=dm, �4:9�
where the di�erentiations are operated on the expressions

b � J�m�
�
l2�m�
l3�m�

�
, a � K�m�

�
l2�m�
l3�m�

�
�4:10�
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It is understood that the last four expressions will be evaluated at m � m0 to obtain the eigenvectors and
generalized eigenvectors in accordance with the derivative rule. Notice that b� is not a null vector
because its second component l 02�m0� � 2�b55m0 ÿ b45� does not vanish (otherwise the eigenvalue m0 �
b45=b55 would be real).

A second degenerate case refers to abnormal materials with a triple root m0: Then, M�m0� � 0 so that
Eq. (4.1a) has two independent solutions, one of which may be taken as f0, 1gT: Furthermore, d 00�m0��
2fl 02�m0�l 04�m0�ÿ l 03�m0�2g � 0, but l2�m0�6�0 since m0 cannot be real. Hence, the second independent solution
of Eq. (4.1a) may be chosen as fb2, b3gT � fl 02�m0�, l 03�m0�gT: Then, Eq. (4.5) is satis®ed by an arbitrary
fb�2, b�3gT: We choose fb�2, b�3gT�fl 002 �m0�, l 003 �m0�gT and b�1��ÿml 02� 0�m0� so that Eq. (4.3) and the derivative
rule of Eq. (4.9) remain valid, whereas Eq. (4.10) is replaced by

b � J�m�
�
l 02�m�
l 03�m�

�
, a � K�m�

�
l 02�m�
l 03�m�

�
: �4:11�

Eqs. (4.2a) and (4.2b) become

u � d=dm
�
af�z�	, q � d=dm

�
bf�z�	: �4:12�

Again, it is understood that all functions of m associated with a multiple eigenvalue m0 are to be
evaluated at m � m0 after performing the required di�erentiations. This convention will be adopted also
in the following analysis. One ®nds that the derivative rule may also be used to obtain additional
eigensolutions associated with generalized eigenvectors.

The Barnett±Lothe tensors for the two degenerate cases are given below.

4.1. N-Double material (the D1 group)

The characteristic equation d�m� � 0 has one double root m0 with l2�m0�6�0 and a simple root m̂: The b-
vector associated with the simple root m̂ is chosen to be b�1� � fÿm̂

����������
l2�m̂�

p
,

����������
l2�m̂�

p
,

����������
l4�m̂�

p
gT: Furthermore,

let b�2� �ÿfml2�m�, l2�m�, l3�m�gT, and b�3� � db�2�=dm, respectively, be the eigenvector and the generalized
eigenvector associated with the double root m0: Then,

b�1�Ta�1� � a�1�Tb�1� �
� ����������

l2
ÿ
m̂
�q ����������

l4
ÿ
m̂
�q �

(m̂, m̂)

8>><>>:
����������
l2
ÿ
m̂
�q

����������
l4
ÿ
m̂
�q
9>>=>>; � d 0

ÿ
m̂
�
,

b�2�Ta�2� � a�2�Tb�2� � � l2�m�, l3�m�
	
(m, m)

�
l2�m�
l3�m�

�
� l2�m�d 0�m� ÿ l 02�m�d�m�,

b
�1�Ta�2� � a�1�Tb�2� �

� ����������
l2
ÿ
m̂
�q ����������

l4
ÿ
m̂
�q �

(m̂, m)
�
l2�m�
l3�m�

�

� 1

m̂ÿ m

264 l2�m�
����������
l4
ÿ
m̂
�q
� l3�m�

����������
l2
ÿ
m̂
�q

����������
l2
ÿ
m̂
�q ����������

l4
ÿ
m̂
�q
� l3

ÿ
m̂
� d

ÿ
m̂
�ÿ d�m�

����������
l2
ÿ
m̂
�q 375:

The last two expressions both vanish since d�m̂�� d�m0�� d 0�m0�� 0: Furthermore, di�erentiating the last
two equations with respect to m, and using d�m̂��d�m0��d 0�m0��0, one obtains
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2
ÿ
b�2�Ta�3� � a�2�Tb�3�

�
� l2�m0�d 00�m0�, b�1�Ta�3� � a�1�Tb�3� � 0

Using Eqs. (4.1b), (4.1c), (4.6) and (4.7), one obtains

b�3�Ta�3� � a�3�Tb�3� �

�
b�2, b

�
3

	
M 0�m�

�
b�2
b�3

�
� �b�2, b�3	M 00�m�

�
b2
b3

�
� 1=6

�
b2, b3

	
M 000�m�

�
b2
b3

�

� l2d
000=6� l 02d

00=2ÿ l 002 d
0=2:

The preceding expressions imply that

BTA� ATB � OOO �

264 d 0
ÿ
m̂
�

0 0
0 0 l2�m0�d 00�m0�=2
0 l2�m0�d 00�m0�=2 l2�m0�d 000�m0�=6� l 02�m0�d 00�m0 �=2

375 �4:13�

OOOÿ1 �

2664
1=d 0

ÿ
m̂
�

0 0

0 �2=3�ÿ1=d 00� 0=l2�m0� � 2�1=l2� 0=d 00�m0 � 2=
�
l2�m0�d 00�m0 �

	
0 2=

�
l2�m0�d 00�m0�

	
0

3775 �4:14�

For the two pairs of eigenvectors fb�1�, a�1�g and fb�2�, a�2�g, Eq. (2.25) yields

b�1�T Åa�1� � a�1�T Åb
�1� � b�1�T Åa�2� � a�1�T Åb

�2� � b�2�T Åa�2� � a�2�T Åb
�2� � 0:

Furthermore, taking the partial derivative of Eq. (2.25) with respect to m, and using Eqs. (2.23a), (4.1a)
and (4.5), one obtains b�3�T Åa�1� �a�3�T Åb

�1� �b�3�T Åa�2� �a�3�T Åb
�2� �0: Similarly, repeated di�erentiation of Eq.

(2.25) with respect to m and �m yields b�3�T Åa�3� � a�3�T Åb
�3� � 0: Thus, the derivative rule implies that the

identity

BT ÅA� AT ÅB � 0, �4:15�
remains valid when the matrices B and A include generalized eigenvectors among the columns. Then,
with OOO and OOOÿ1 given by Eq. (4.14), the modi®ed orthogonality relations of Eqs. (3.2) and (3.3) are also
satis®ed. The Barnett±Lothe tensors are

L � 2iBOOOÿ1BT � 2i
h�
1=d 0

ÿ
m̂
�	

JUJT
ÿ
m̂
�� ÿ2=d 00�ÿJUJT

� 0
�m0� � �2=3�

ÿ
1=d 00

� 0
JUJT�m0�

i
,

H � ÿ2iAOOOÿ1AT � ÿ2i
h�
1=d 0

ÿ
m̂
�	

KUKT
ÿ
m̂
�� ÿ2=d 00��KUKT � 0�m0� � �2=3�

ÿ
1=d 00

� 0
KUKT�m0�

i
,

S � ÿi�2AOOOÿ1BT ÿ I� � ÿ2i
h�
1=d 0

ÿ
m̂
�	

KUJT
ÿ
m̂
�� ÿ2=d 00�ÿKUJT

� 0
�m0� � �2=3�

� ÿ1=d 00� 0KUJT�m0�
i
� iI: �4:16�
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4.2. A-Triple materials (the D2 group)

d�m� � 0 has a triple root m0 with M�m0� � 0: Hence, U�m0� � 0 and

d 00�m0� � 2
ÿ
l 02l
0
4 ÿ l 03

2
� � 0, �4:17�

where l 02�m0�6�0 since l2�m� � 0 cannot have a double root. The eigenvectors are�
b�1�, b�2�

	
� J

�
0 l 02
1 l 03

�
b�3� � db�2�=dm � J 0

�
l 02
l 03

�
� J

�
l 002
l 003

�
�4:18�

�
a�1�, a�2�

	
� K

�
0 l 02
1 l 03

�
a�3� � da�2�=dm � K 0

�
l 02
l 03

�
�K

�
l 002
l 003

�
�4:19�

Then,

b�1�Ta�1� � a�1�Tb�1� � f0, 1g
ÿ
JTK�KTJ

�� 0
1

�
� f0, 1gM 0

�
0
1

�
� l 02,

b�1�Ta�2� � a�1�Tb�2� � f0, 1gM 0
�
l 02
l 03

�
� 0,

b�1�Ta�3� � a�1�Tb�3� � f0, 1g
ÿ
JTK 0 �KTJ 0

�� l 02
l 03

�
� f0, 1g

ÿ
JTK�KTJ

�� l 002
l 003

�

� f0, 1gÿM 00=2
�� l 02

l 03

�
� f0, 1gM 0

�
l 002
l 003

�
� ÿl 02l 003 ÿ l 03l

00
2

�
=2,

b�3�Ta�3� � a�3�Tb�3� � �l 02, l 03	ÿJ 0TK 0 �K 0TJ 0
�� l 02

l 03

�
� 2

�
l 002 , l

00
3

	ÿ
JTK 0 �KTJ 0

�� l 02
l 03

�

��l 002 , l 003 	ÿJTK�KTJ
�� l 002

l 003

�

� �l 02, l 03	ÿM 000=6
�� l 02

l 03

�
� �l 002 , l 003 	M 00

�
l 02
l 03

�
� �l 002 , l 003 	M 0

�
l 002
l 003

�

� l 002 d
000=3ÿ l 02

ÿ
l 002 l
00
4 ÿ l 003

2
�� l 02d

0000=24,

b�2�Ta�2� � a�2�Tb�2� � �l 02, l 03	M 0
�
l 02
l 03

�
� l 02

ÿ
l 02l
0
4 ÿ l 03

2
�
:

Di�erentiation of the last equation yields
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2
�
b�2�Ta�3� � a�2�Tb�3�

	
� l 02

ÿ
l 04l
00
2 � l 02l

00
4 ÿ 2l 03l

00
3

� � l 02d
000�m�=3:

Consequently,

OOO �

264 l 02 0
ÿ
l 02l
00
3 ÿ l 03l

00
2

�
=2

0 0 l 02d
000=6ÿ

l 02l
00
3 ÿ l 03l

00
2

�
=2 l 02d

000=6 l 02d
0000=24� l 002 d

000=3ÿ l 02
ÿ
l 002 l
00
4 ÿ l 003

2
�
=4

375 �4:20a�

OOOÿ1 � ÿ3=l 02d 000�
264 d 000=3 ÿÿl 02l 003 ÿ l 03l

00
2

�
=l 02 0

ÿÿl 02l 003 ÿ l 03l
00
2

�
=l 02 ÿd 0000=�2d 000 � ÿ 3l 002 =l

0
2 2

0 2 0

375 �4:20b�

The derivative rule for deriving the generalized eigenvectors implies the validity of Eq. (4.15) for the
present case. The Barnett±Lothe tensors are given by

L � ÿ6i=d 000�ÿJUJT
� 00
�m0� � 3i

ÿ
1=d 000

� 0
JU 0JT�m0 �,

H � ÿÿ6i=d 000��KUKT � 00�m0� ÿ 3i
ÿ
1=d 000

� 0
KU 0KT�m0�,

S � ÿÿ6i=d 000�ÿKUJT
� 00
�m0� ÿ 3i

ÿ
1=d 000

� 0
KU 0JT�m0� � iI: �4:21�

5. Extra-degenerate case (N-Triple materials)

The remaining case is that of N-Triple materials, for which d�m� � 0 has a triple root m0 with
M�m0�6�0: Then, none of the elements of M�m0� can vanish because otherwise m0 would be a root of
either l2l4 � 0 or l23 � 0, and consequently of both (since d�m� � l2l4 ÿ l23 � 0), and consequently of l2 �
l3 � l4 � 0 (since m0 is a triple root), so that the material would be abnormal.

It follows that the singular matrix M�m0� is of rank one and Eqs. (4.1a)±(4.1c) yields only one set of
independent eigenvectors {a, b}. The case is extra-degenerate. Eqs. (4.9) and (4.10) give one set of
generalized eigenvectors {a�, b�}, and Eqs. (4.2a) and (4.2b) gives the corresponding eigensolution. We
seek an additional independent solution of the form

u � a��f�z� � a�2yf 0�z� � ay2f 00�z�, q � b��f�z� � b�2yf 0�z� � by2f 00�z�, �5:1�
where the vectors a and b satisfy Eqs. (4.1a)±(4.1c), and where b� � fb�1, b�2, b�3gT, a� � fa�1, a�2, a�3gT,
b�� � fb��1 , b��2 , b��3 gT and a�� � fa��1 , a��2 , a��3 gT are vectors to be determined. Then,

ÿ@xF,y � ÿb��1 f 0�z� ÿ b�12yf
00�z� ÿ b1y

2f 000�z�

� @y
ÿÿ F,x

� � mb��2 f 0�z� � mb�22yf
00�z� � 2b�2f

0�z� � b22yf
00�z� � mb2y2f 000�z�

Hence,

b�1 � ÿmb�2 ÿ b2, b��1 � ÿmb��2 ÿ 2b�2 �5:2�
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The strain and stress components are give by

fEg � E�m�
�
a��f 0�z� � a�2yf 00�z� � ay2f 000�z�

�
� E 0�m�

�
a�2f 0�z� � a2yf 00�z��: �5:3a�

fsg � P�m�
�
b��2
b��3

�
f 0�z� �

�
b�2
b�3

�
2yf 00�z� �

�
b2
b3

�
y2f 000�z�

�P 0�m�
�
b�2
b�3

�
2f 0�z� �

�
b2
b3

�
2yf 00�z�: �5:3b�

Following the procedure of the last section, one obtains, in addition to Eqs. (4.5)±(4.7) for b� and a�,
the eigenrelations for b�� and a��:

E�m�a�� � 2E 0�m�a� � E 00�m�a �
�
b
��

P�m�
�
b��2
b��3

�
� 2P 0�m�

�
b�2
b�3

�
� P 00�m�

�
b2
b3

��
, �5:4�

M�m�
�
b��2
b��3

�
� 2M 0�m�

�
b�2
b�3

�
�M 00�m�

�
b2
b3

�
�
�
0
0

�
, �5:5�

where

a�� � K�m�
�
b��2
b��3

�
� 2K 0�m�

�
b�2
b�3

�
�K 00�m�

�
b2
b3

�
, �5:6�

b�� � J�m�
�
b��2
b��3

�
� 2J 0�m�

�
b�2
b�3

�
� J 00�m�

�
b2
b3

�
: �5:7�

Di�erentiating Eq. (4.8), one obtains

M�m�
�
l 002 �m�
l 003 �m�

�
� 2M 0�m�

�
l 02�m�
l 03�m�

�
�M 00�m�

�
l2�m�
l3�m�

�
�
�
d 00�m�
0

�
: �5:8�

Eqs. (4.5)±(4.7) and (5.5)±(5.7) may be satis®ed by choosing

b � J�m�
�
l2�m�
l3�m�

�
, a � K�m�

�
l2�m�
l3�m�

�
�5:9�

b� � db=dm, a� � da=dm, �5:10�

b�� � d2b=dm2, a�� � d2a=dm2, �5:11�
Notice that fb�2, b�3g � fl 02�m0�, l 03�m0�g and fb��2 , b��3 g � fl 002 �m0�, l 003 �m0�g: Furthermore, Eq. (5.1) becomes

u � d2=dm2
�
af�z�	, q � d2=dm2

�
bf�z�	: �5:12�

Eqs. (5.10)±(5.12) manifest the derivative rule for obtaining b��, a�� and the associated eigensolution.
Let
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B � �b, b�, b��
	
, A � �a, a�, a��

	
, OOO � BTA� ATB

Then, by taking the various derivatives of the identity bT Åa� aT Åb � fb2, b3g(m, �m)fb2, b3gT with respect to
m and �m, using Eq. (2.23a), (4.1a), (4.5), (5.8) and d 00�m0� � d 00� �m0� � 0, one obtains BT ÅA� AT ÅB � 0:
Furthermore,

OOO �
24 0 0 l2d

000=3
0 l2d

000=6 l2d
0000=12� l 02d

000=3
l2d
000=3 l2d

0000=12� l 02d
000=3 l2d

00000=30� l 02d
0000=6� l 002 d

000=3

35 �5:13a�

OOOÿ1 � 3

l2d 000

266666664
ÿl 002
l2
� 2

�
l 02
l2

�2

�1
8

�
d 0000

d 000

�2

� l 02d
0000

2l2d
000 ÿ

d 00000

10d 000
ÿ
�
2l 02
l2
� d 0000

2d 000

�
1

ÿ
�
2l 02
l2
� d 0000

2d 000

�
2 0

1 0 0

377777775 �5:13b�

The Barnett±Lothe tensors are

L � ÿ6i=d 000�ÿJUJT
� 00�3iÿ1=d 000� 0ÿJUJT

� 0��6i=19�ÿ1=d 000� 00JUJT,

H � ÿÿ6i=d 000��KUKT � 00ÿ3iÿ1=d 000� 0�KUKT � 0ÿ�6i=19�ÿ1=d 000� 00KUKT,

S � ÿÿ6i=d 000�ÿKUJT
� 00ÿ3iÿ1=d 000� 0ÿKUJT

� 0ÿ�6i=19�ÿ1=d 000� 00KUJT � iI �5:14�
Notice that Eq. (5.14) for N-Triple materials reduces to Eq. (4.21) for A-Triple materials as U�m0�
vanishes. Likewise, Eq. (4.16) for N-Double materials reduces to Eq. (3.10) for A-Double materials as
U�m0� vanishes. Therefore, the expressions of the Barnet±Lothe tensors of normal materials remain valid
for abnormal materials having the same multiplicity of eigenvalues. They are given by Eqs. (3.7a)±(3.7c),
(4.16) and (5.14), respectively, when the multiplicity is 1, 2 or 3. These expressions show that each
Barnett±Lothe tensor is composed of separate terms associated with the various eigenvalues. A simple
root of d�m� � 0 contributes a term �2i=d 0� JUJT to the tensor L, a double root contributes �4i=d 00 � �
�JUJT� 0 � �4i=3��1=d 00 � 0JUJT, and a triple root gives the right-hand side of the ®rst equation of Eq.
(5.14).

6. General solutions for the displacements, the stress and the strain

In the two non-degenerate cases, complete solutions of the displacements and stress resultants are
given by Eqs. (2.4a) and (2.4b), where the eigenvectors are given by Eq. (3.1) for N-simple materials (the
SP Group) and by Eqs. (3.8a) and (3.8b) for A-Double materials (the SS group). In the two degenerate
cases (N-Double and A-Triple materials), the number of conjugate pairs of independent solutions is
reduced by one due to the corresponding reduction in the number of independent eigenvectors, and an
additional solution is provided by Eqs. (4.2a), (4.2b), (4.9) and (4.10) for N-Double materials and by
Eqs. (4.2a), (4.2b), (4.9) and (4.11) for A-Triple materials. In the extra-degenerate case (N-Triple
materials), Eq. (5.9) and u � af �x� m0y�, q � bf�x� m0y� provide one independent eigensolution. An
additional solution is given by Eqs. (4.2a), (4.2b), (4.9) and (5.9). A third eigensolution is provided by
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Eqs. (5.1) and (5.9)±(5.11). In all cases, the complex conjugates of the eigenvectors or generalized
eigenvectors are also eigenvectors or generalized eigenvectors associated with the conjugate eigenvalue.
For u and q to be real-valued, one must have fi�3�x� my� � fi�x� �my�:

For the ®ve distinct cases, explicit forms of the general solutions for the displacements, the stress and
the strain are shown in the following in terms of the matrices J, P, E and K de®ned by Eqs. (2.2a),
(2.8a), (2.8b), (2.18a) and (2.18b).

6.1. N-Simple materials (the SP group)

d�m� � 0 has three distinct pairs of complex conjugate roots

u �
X3
i�1

Re

264fi�x� miy�K�mi �

8<:
�����������
l2�mi �

p
�����������
l4�mi �

p
9=;
375, q �

X
Re

264fi�x� miy�J�mi �

8<:
�����������
l2�mi �

p
�����������
l4�mi �

p
9=;
375,

fsg �
X

Re

264f 0i �x� miy�P�mi �

8<:
�����������
l2�mi �

p
�����������
l4�mi �

p
9=;
375, fEg �

X
Re

264f 0i �x� miy�E�mi �K�mi �

8<:
�����������
l2�mi �

p
�����������
l4�mi �

p
9=;
375:

6.2. A-Double materials (the SS group)

One double root m0 with M�m0� � 0 and one simple root m̂

u � Re

"
K�m0 �

�
f1�x� m0y�
f2�x� m0y�

�
� f3

ÿ
x� m̂y

�
K
ÿ
m̂
�( l2

ÿ
m̂
�

l3
ÿ
m̂
� )#:

To obtain q, replace the K matrices in the preceding expression by J. To obtain fsg and fEg, replace K
by P and EK, respectively, and then replace the functions fi by the derivatives f 0i : The same rule also
applies to the following three degenerate and extra-degenerate cases.

6.3. N-Double materials (the D1 group)

One double root m0 with l2�m0�6�0 and one simple root m̂

u � Re

2664f1�x� my�K�m�
�
l2�m�
l3�m�

�
� d

dm

�
f2�x� my�K�m�

�
l2�m�
l3�m�

��
� f3

ÿ
x� m̂y

�
K
ÿ
m̂
�8>><>>:

����������
l2
ÿ
m̂
�q

����������
l4
ÿ
m̂
�q
9>>=>>;
3775:

6.4. A-Triple materials (the D2 group)

One triple root m0 with l2�m0� � l3�m0� � l4�m0� � 0

u � Re

�
f1�x� my�K�m�

�
0
1

�
� f2�x� my�K�m�

�
l 02�m�
l 03�m�

�
� d

dm

�
f3�x� my�K�m�

�
l 02�m�
l 03�m�

���
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6.5. N-Triple materials (the ED group)

One triple root m0 with nonvanishing l2�m0�, l3�m0� and l4�m0�

u � Re

"
f1�x� my�K�m�

�
l2�m�
l3�m�

�
� d

dm

�
f2�x� my�K�m�

�
l2�m�
l3�m�

��
� d2

dm2

�
f3�x� my�K�m�

�
l2�m�
l3�m�

��#

In accordance with the derivative rule, all functions of m in the expressions of the last three material
types are to be evaluated at m � m0 after performing the required di�erentiations.

Notice that for N-Simple and N-Double materials, the vector f ����������
l2�m�

p
,

����������
l2�m�

p gT associated with a
simple eigenvalue m may be replaced either by fl2�m�, l3�m�gT or by fl3�m�, l4�m�gT, since the last two
vectors do not both vanish for a simple eigenvalue. Therefore, in all cases, the eigenvectors, generalized
eigenvectors and the general solutions for the displacements and stresses may be chosen to be polynomial
functions of the associated eigenvalues.

7. Summary

Regarding the nature of general solutions under generalized plane deformation, anisotropic linearly
elastic materials may be classi®ed into ®ve mutually exclusive types depending on the multiplicity of
eigenvalues and, in cases of a repeated eigenvalue m � m0, whether the eigenmatrix M�m� of Eq. (2.2b)
vanishes at m � m0: These ®ve classes of materials have di�erent representations of the eigenvectors and
of the general solutions for the displacements, the stress and the strain, as given in the last section. In
the two non-degenerate cases (N-Simple and A-Double materials), there are three independent pairs of
a- and b-vectors determined by the eigenrelations (2.11)±(2.13). In the two degenerate cases (N-Double
and A-Triple materials), an additional eigensolution in the form of Eqs. (4.2a) and (4.2b) may be found
where the generalized eigenvectors a� and b� satisfy a di�erent set of eigenrelations. These relations are
given by Eqs. (4.4) and (4.5), instead of Eqs. (2.11) and (2.13). In the extra-degenerate case (N-Triple
materials), Eq. (5.1) gives a second generalized eigensolution involving a second pair of generalized
eigenvectors a�� and b��. They satisfy the eigenrelations of Eqs. (5.4) and (5.5). The eigenrelations
governing the generalized eigenvectors imply that the latter may be computed from suitably chosen
unnormalized eigenvectors according to the derivative rule (Eqs. (4.9) and (5.10)±(5.11)). The derivative
rule also applies to the eigensolutions of the displacements and the stress potentials. The implementation
of the derivative rule is facilitated by using unnormalized eigenvectors whose components are polynomial
functions of the eigenvalues, viz., Eq. (4.10) for normal materials and Eq. (4.11) for abnormal materials.

The unnormalized a- and b-vectors satisfy the modi®ed orthogonality and closure relations (Eq. (3.2)
and (3.3), respectively). These relations contain a matrix OOO depending on the type of the material and
the choice of a- and b-vectors. A signi®cant amount of algebraic manipulation is required to obtain OOO in
each case, but the inverse of OOO is easily obtained in closed form. The closure relation implies the
expressions of the real matrices L, S and H as given by Eq. (3.4). Notice that these expressions, as well
as the modi®ed orthogonality and closure relations of Eqs. (3.2)±(3.4), have identical forms for all ®ve
types of anisotropic elastic materials.

By substituting the matrices B and A into OOO � BTA� ATB, we obtain explicit analytical expressions
of the Barnett±Lothe tensors for all types of normal and abnormal anisotropic materials, i.e., Eqs.
(3.7a)±(3.7c), (4.16) and (5.14), respectively, when the characteristic equation has single, double and
triple roots. The simple matrix forms of these expressions make them exceedingly easy to evaluate for a
speci®c material by using computer algebra. Expressions equivalent to Eqs. (3.7a)±(3.7c) were given
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recently by Ting (1997) for the case of three distinct eigenvalues. These expressions are not valid for a
repeated eigenvalue m because the terms associated with m contain the factor 1=d 0�m�: Ting and Lee
(1997) found that the terms may be partitioned and formally rearranged, resulting in alternative
expressions that remain bounded for the repeated eigenvalue.
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